P.T.O.

I Semester M.Sc. Examination, January 2015 (CBCS) CHEMISTRY C – 103 : Physical Chemistry – I

Time : 3 Hours

Instruction: Answer question no. **1** and **any five** of the **remaining** questions.

- 1. Answer any ten of the following :
 - a) Explain the significance of eigen functions.
 - b) Write down the Hamiltonian operator for normal the atom and explain each term.
 - c) Define Ladder operators.
 - d) Give a comparative account of spin and angular momenta.
 - e) Define Pauli-exclusion principle.
 - f) List the possible values of J for 4_{D} and 3_{P} terms.
 - g) What is temperature coefficient ? Explain.
 - h) State the steps involved in chain reactions with an example.
 - i) Give reasons for inadequacy of conventional techniques to study fast reactions.
 - j) Explain autocatalytic reaction with an example.
 - k) Show graphically the different types of adsorption isotherms.
 - I) How do activators and inhibitors act on enzyme activity ?
- 2. a) State the postulates of quantum mechanics.
 - b) Derive the time independent Schrodinger wave equation.
 - c) Show that the function $e^{im\phi}$ is an eigen function of the angular momentum operators \hat{L}_2 as well \hat{L}^2 . Give the respective eigen values. (3+3+4=10)
- 3. a) Formulate the Schrodinger equation for the hydrogen atom and separate into γ , θ and ϕ equations.
 - b) Write a note on quantum numbers and their significance. (5+5=10)

(2×10=20)

Max. Marks: 70

PG – 597

PG - 597

4.	a) b)	Discuss the primary salt effect on ionic reactions in solution. Explain the mechanism of pyrolysis of acetaldehyde.	(6+4=10)
5.	a) b)	Discuss the Lock and Key theory in enzyme catalyzed reactions.	
	с)	Write about the significance of Michaelis-Menten constant.	(4+3+3=10)
6.	a) b)	Briefly discuss the condition of normalization. Explain quantum mechanical degeneracy.	
	c)	Write a note on Zeemen effect.	(3+4+3=10)
7.	a)	Describe the stopped flow method for the study of fast reactions.	
	b)	Derive Gibbs adsorption equation and give its significance.	(5+5=10)
8.	a)	Give an account of Hinshelwood theory of unimolecular reactions.	
	b)	When a sample of pure water is subjected to the temperature jump experiment,	
		the relaxation time is 40μ sec at 25° C. Calculate the rate constants for the	
		forward and reverse reactions assuming first order in both directions.	
	c)	Explain Slater determinants.	(4+3+3=10)